Skip to content

Battle

This module defines the Battle class and thus what each battle type can do to customize how it runs and scores the programs. If you are implementing your own custom battle types, make sure they adhere to the api specifications laid out here.

algobattle.battle.Battle

Bases: BaseModel

Base for classes that execute a specific kind of battle.

Each battle type determines what parameters each fight will be fought with, how many fights are fought, and how they will ultimately be scored.

Source code in algobattle/battle.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
class Battle(BaseModel):
    """Base for classes that execute a specific kind of battle.

    Each battle type determines what parameters each fight will be fought with, how many fights are fought, and how
    they will ultimately be scored.
    """

    fights: list[Fight] = Field(default_factory=list)
    """The list of fights that have been fought in this battle."""
    runtime_error: ExceptionInfo | None = None
    """The description of an otherwise unhandeled exception that occured during the execution of :meth:`Battle.run`."""

    _battle_types: ClassVar[dict[str, type[Self]]] = {}
    """Dictionary mapping the names of all registered battle types to their python classes."""

    class Config(BaseModel):
        """Config object for each specific battle type.

        A custom battle type can override this class to specify config options it uses. They will be parsed from a
        dictionary located at `battle` in the main config file. The created object will then be passed to the
        :meth:`Battle.run` method with its fields set accordingly.
        """

        type: Any
        """Type of battle that will be used."""

        @classmethod
        def __get_pydantic_core_schema__(cls, source: Type, handler: GetCoreSchemaHandler) -> CoreSchema:
            # there's two bugs we need to catch:
            # 1. this function is called during the pydantic BaseModel metaclass's __new__, so the BattleConfig class
            # won't be ready at that point and be missing in the namespace
            # 2. pydantic uses the core schema to build child classes core schema. for them we want to behave like a
            # normal model, only our own schema gets modified
            try:
                if cls != Battle.Config:
                    return handler(source)
            except NameError:
                return handler(source)

            match len(Battle._battle_types):
                case 0:
                    subclass_schema = handler(source)
                case 1:
                    subclass_schema = handler(next(iter(Battle._battle_types.values())))
                case _:
                    subclass_schema = tagged_union_schema(
                        choices={
                            battle.Config.model_fields["type"].default: battle.Config.__pydantic_core_schema__
                            for battle in Battle._battle_types.values()
                        },
                        discriminator="type",
                    )

            # we want to validate into the actual battle type's config, so we need to treat them as a tagged union
            # but if we're initializing a project the type might not be installed yet, so we want to also parse
            # into an unspecified dummy object. This wrap validator will efficiently and transparently act as a tagged
            # union when ignore_uninstalled is not set. If it is set it catches only the error of a missing tag, other
            # errors are passed through
            def check_installed(val: object, handler: ValidatorFunctionWrapHandler, info: ValidationInfo) -> object:
                try:
                    return handler(val)
                except ValidationError as e:
                    union_err = next(filter(lambda err: err["type"] == "union_tag_invalid", e.errors()), None)
                    if union_err is None:
                        raise
                    if info.context is not None and info.context.get("ignore_uninstalled", False):
                        if info.config is not None:
                            settings: dict[str, Any] = {
                                "strict": info.config.get("strict", None),
                                "from_attributes": info.config.get("from_attributes"),
                            }
                        else:
                            settings = {}
                        return Battle.FallbackConfig.model_validate(val, context=info.context, **settings)
                    else:
                        passed = union_err["input"]["type"]
                        installed = ", ".join(b.name() for b in Battle._battle_types.values())
                        raise ValueError(
                            f"The specified battle type '{passed}' is not installed. Installed types are: {installed}"
                        )

            return with_info_wrap_validator_function(check_installed, subclass_schema)

    class FallbackConfig(Config):
        """Fallback config object to parse into if the proper battle typ isn't installed and we're ignoring installs."""

        type: str

        model_config = ConfigDict(extra="allow")

        if TYPE_CHECKING:
            # to hint that we're gonna fill this with arbitrary data belonging to some supposed battle type
            def __getattr__(self, __attr: str) -> Any: ...

    class UiData(BaseModel):
        """Object containing custom diplay data.

        The display data object will be displayed as key-value pairs generated from the :meth:`.field` method.
        You can use the normally available pydantic config options to customize what these will look like.
        """

    @staticmethod
    def all() -> dict[str, type["Battle"]]:
        """Returns a dictionary mapping the names of all registered battle types to their python classes.

        It includes all subclasses of :class:`Battle` that have been initialized so far, including ones exposed to the
        algobattle module via the `algobattle.battle` entrypoint hook.
        """
        return Battle._battle_types

    @classmethod
    def load_entrypoints(cls) -> None:
        """Loads all battle types presented via entrypoints."""
        for entrypoint in entry_points(group="algobattle.battle"):
            battle = entrypoint.load()
            if not (isclass(battle) and issubclass(battle, Battle)):
                raise ValueError(f"Entrypoint {entrypoint.name} targets something other than a Battle type")

    @classmethod
    def __pydantic_init_subclass__(cls, **kwargs: Any) -> None:
        if cls.name() not in Battle._battle_types:
            Battle._battle_types[cls.name()] = cls
            Battle.Config.model_rebuild(force=True)
        return super().__pydantic_init_subclass__(**kwargs)

    @abstractmethod
    def score(self, config: _BattleConfig) -> float:
        """Calculates the score the solver has achieved during this battle.

        Should always be a nonnegative float, with higher values indicating a better performance of the solver.
        """
        raise NotImplementedError

    @staticmethod
    def format_score(score: float) -> str:
        """Formats a given score nicely.

        Purely auxialiary method that can be used to customize how a score will be rendered.
        """
        return f"{score:.2f}"

    @classmethod
    def name(cls) -> str:
        """Name of this battle type.

        Defaults to the battle class's name. Can be used to customize this behaviour if e.g. a battle type should have a
        name that is not a valid python identifier.
        """
        return cls.__name__

    @abstractmethod
    async def run_battle(self, fight: FightHandler, config: _BattleConfig, min_size: int, ui: BattleUi) -> None:
        """Executes one battle.

        Args:
            fight: The :class:`FightHandler` used to run each fight of this battle. It already contains information
                about the participating teams, default config settings, etc. Each fight can be executed using the
                :meth:`FightHandler.run` method.
            config: An instance of this battle type's :class:`BattleConfig` class, parsed from the corresponding section
                of the config file.
            min_size: The minimum size valid for this problem.
            ui: An interface to interact with the ui.
        """
        raise NotImplementedError

UiData

Bases: BaseModel

Object containing custom diplay data.

The display data object will be displayed as key-value pairs generated from the :meth:.field method. You can use the normally available pydantic config options to customize what these will look like.

Source code in algobattle/battle.py
434
435
436
437
438
439
class UiData(BaseModel):
    """Object containing custom diplay data.

    The display data object will be displayed as key-value pairs generated from the :meth:`.field` method.
    You can use the normally available pydantic config options to customize what these will look like.
    """

score(config) abstractmethod

Calculates the score the solver has achieved during this battle.

Should always be a nonnegative float, with higher values indicating a better performance of the solver.

Source code in algobattle/battle.py
465
466
467
468
469
470
471
@abstractmethod
def score(self, config: _BattleConfig) -> float:
    """Calculates the score the solver has achieved during this battle.

    Should always be a nonnegative float, with higher values indicating a better performance of the solver.
    """
    raise NotImplementedError

format_score(score) staticmethod

Formats a given score nicely.

Purely auxialiary method that can be used to customize how a score will be rendered.

Source code in algobattle/battle.py
473
474
475
476
477
478
479
@staticmethod
def format_score(score: float) -> str:
    """Formats a given score nicely.

    Purely auxialiary method that can be used to customize how a score will be rendered.
    """
    return f"{score:.2f}"

name() classmethod

Name of this battle type.

Defaults to the battle class's name. Can be used to customize this behaviour if e.g. a battle type should have a name that is not a valid python identifier.

Source code in algobattle/battle.py
481
482
483
484
485
486
487
488
@classmethod
def name(cls) -> str:
    """Name of this battle type.

    Defaults to the battle class's name. Can be used to customize this behaviour if e.g. a battle type should have a
    name that is not a valid python identifier.
    """
    return cls.__name__

run_battle(fight, config, min_size, ui) abstractmethod async

Executes one battle.

Parameters:

Name Type Description Default
fight FightHandler

The :class:FightHandler used to run each fight of this battle. It already contains information about the participating teams, default config settings, etc. Each fight can be executed using the :meth:FightHandler.run method.

required
config _BattleConfig

An instance of this battle type's :class:BattleConfig class, parsed from the corresponding section of the config file.

required
min_size int

The minimum size valid for this problem.

required
ui BattleUi

An interface to interact with the ui.

required
Source code in algobattle/battle.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
@abstractmethod
async def run_battle(self, fight: FightHandler, config: _BattleConfig, min_size: int, ui: BattleUi) -> None:
    """Executes one battle.

    Args:
        fight: The :class:`FightHandler` used to run each fight of this battle. It already contains information
            about the participating teams, default config settings, etc. Each fight can be executed using the
            :meth:`FightHandler.run` method.
        config: An instance of this battle type's :class:`BattleConfig` class, parsed from the corresponding section
            of the config file.
        min_size: The minimum size valid for this problem.
        ui: An interface to interact with the ui.
    """
    raise NotImplementedError

algobattle.battle.FightHandler dataclass

Helper class to run fights of a given battle.

Source code in algobattle/battle.py
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
@dataclass
class FightHandler:
    """Helper class to run fights of a given battle."""

    problem: Problem
    generator: Generator
    solver: Solver
    battle: "Battle"
    ui: FightUi
    set_cpus: str | None
    log_config: ProgramLogConfigView

    @overload
    async def run(
        self, max_size: int, *, with_results: Literal[False] = False, **kwargs: Unpack[RunKwargs]
    ) -> Fight: ...

    @overload
    async def run(
        self, max_size: int, *, with_results: Literal[True], **kwargs: Unpack[RunKwargs]
    ) -> tuple[Fight, GeneratorResult, SolverResult | None]: ...

    async def run(
        self, max_size: int, *, with_results: bool = False, **kwargs: Unpack[RunKwargs]
    ) -> Fight | tuple[Fight, GeneratorResult, SolverResult | None]:
        """Execute a single fight of a battle.

        First the generator will be run and its output parsed. Then the solver will be given the created instance
        and run. Its output gets parsed into a solution, which will then be scored.
        The timeout, space, and cpu arguments each override the corresponding match config options if set. Leaving them
        unset results in the config options being used.

        Args:
            max_size: The maximum instance size the generator is allowed to create.
            timeout_generator: Timeout in seconds for the generator to finish running. `None` means it is given an
                unlimited amount of time.
            space_generator: Memory space in MB the generator has access to. `None` means it is given an unlimited
                amount of space.
            cpus_generator: Number of physical cpu cores the generator can use.
            timeout_solver: Timeout in seconds for the solver to finish running. `None` means it is given an unlimited
                amount of time.
            space_solver: Memory space in MB the solver has access to. `None` means it is given
                an unlimited amount of space.
            cpus_solver: Number of physical cpu cores the solver can use.
            generator_battle_input: Additional data the generator will be provided with.
            solver_battle_input: Additional data the solver will be provided with.
            generator_battle_output: Class used to parse additional data the generator outputs into a python object.
            solver_battle_output: Class used to parse additional data the solver outputs into a python object.
            with_results: Whether to return the raw result objects.

        Returns:
            The resulting info about the executed fight, and the results if the flag has been set.
        """
        gen_result, sol_result = await self.run_raw(max_size=max_size, **kwargs)
        score = self.calculate_score(gen_result, sol_result)
        fight = Fight.from_results(
            score=score, max_size=max_size, generator=gen_result, solver=sol_result, config=self.log_config
        )
        self.battle.fights.append(fight)
        self.ui.end_fight()
        if with_results:
            return fight, gen_result, sol_result
        else:
            return fight

    async def run_raw(
        self,
        max_size: int,
        *,
        timeout_generator: float | None | EllipsisType = ...,
        space_generator: int | None | EllipsisType = ...,
        cpus_generator: int | EllipsisType = ...,
        timeout_solver: float | None | EllipsisType = ...,
        space_solver: int | None | EllipsisType = ...,
        cpus_solver: int | EllipsisType = ...,
        generator_battle_input: Encodable | None = None,
        solver_battle_input: Encodable | None = None,
        generator_battle_output: type[Encodable] | None = None,
        solver_battle_output: type[Encodable] | None = None,
    ) -> tuple[GeneratorResult, SolverResult | None]:
        """Runs a fight and returns the unprocessed results."""
        min_size = self.problem.min_size
        if max_size < min_size:
            raise ValueError(
                f"Cannot run battle at size {max_size} since it is smaller than the smallest "
                f"size the problem allows ({min_size})."
            )
        ui = self.ui
        ui.start_fight(max_size)
        gen_result = await self.generator.run(
            max_size=max_size,
            timeout=timeout_generator,
            space=space_generator,
            cpus=cpus_generator,
            battle_input=generator_battle_input,
            battle_output=generator_battle_output,
            set_cpus=self.set_cpus,
            ui=ui,
        )
        if gen_result.error is not None:
            return gen_result, None
        assert gen_result.instance is not None

        sol_result = await self.solver.run(
            gen_result.instance,
            max_size=max_size,
            timeout=timeout_solver,
            space=space_solver,
            cpus=cpus_solver,
            battle_input=solver_battle_input,
            battle_output=solver_battle_output,
            set_cpus=self.set_cpus,
            ui=ui,
        )
        return gen_result, sol_result

    def calculate_score(self, gen_result: GeneratorResult, sol_result: SolverResult | None) -> float:
        """Calculates the score achieved by the solver in this fight.

        Args:
            gen_result: The generator's result.
            sol_result: The solver's result

        Returns:
            A number in [0, 1] with higher numbers meaning the solver performed better.
        """
        if (
            gen_result.error is not None
            or gen_result.instance is None
            or (self.problem.with_solution and gen_result.solution is None)
        ):
            return 1
        elif sol_result is None or sol_result.error is not None or sol_result.solution is None:
            return 0

        if self.problem.with_solution:
            assert gen_result.solution is not None
            score = self.problem.score(
                gen_result.instance, solver_solution=sol_result.solution, generator_solution=gen_result.solution
            )
        else:
            score = self.problem.score(gen_result.instance, solution=sol_result.solution)
        return max(0, min(1, float(score)))

run(max_size, *, with_results=False, **kwargs) async

run(max_size: int, *, with_results: Literal[False] = False, **kwargs: Unpack[RunKwargs]) -> Fight
run(max_size: int, *, with_results: Literal[True], **kwargs: Unpack[RunKwargs]) -> tuple[Fight, GeneratorResult, SolverResult | None]

Execute a single fight of a battle.

First the generator will be run and its output parsed. Then the solver will be given the created instance and run. Its output gets parsed into a solution, which will then be scored. The timeout, space, and cpu arguments each override the corresponding match config options if set. Leaving them unset results in the config options being used.

Parameters:

Name Type Description Default
max_size int

The maximum instance size the generator is allowed to create.

required
timeout_generator

Timeout in seconds for the generator to finish running. None means it is given an unlimited amount of time.

required
space_generator

Memory space in MB the generator has access to. None means it is given an unlimited amount of space.

required
cpus_generator

Number of physical cpu cores the generator can use.

required
timeout_solver

Timeout in seconds for the solver to finish running. None means it is given an unlimited amount of time.

required
space_solver

Memory space in MB the solver has access to. None means it is given an unlimited amount of space.

required
cpus_solver

Number of physical cpu cores the solver can use.

required
generator_battle_input

Additional data the generator will be provided with.

required
solver_battle_input

Additional data the solver will be provided with.

required
generator_battle_output

Class used to parse additional data the generator outputs into a python object.

required
solver_battle_output

Class used to parse additional data the solver outputs into a python object.

required
with_results bool

Whether to return the raw result objects.

False

Returns:

Type Description
Fight | tuple[Fight, GeneratorResult, SolverResult | None]

The resulting info about the executed fight, and the results if the flag has been set.

Source code in algobattle/battle.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
async def run(
    self, max_size: int, *, with_results: bool = False, **kwargs: Unpack[RunKwargs]
) -> Fight | tuple[Fight, GeneratorResult, SolverResult | None]:
    """Execute a single fight of a battle.

    First the generator will be run and its output parsed. Then the solver will be given the created instance
    and run. Its output gets parsed into a solution, which will then be scored.
    The timeout, space, and cpu arguments each override the corresponding match config options if set. Leaving them
    unset results in the config options being used.

    Args:
        max_size: The maximum instance size the generator is allowed to create.
        timeout_generator: Timeout in seconds for the generator to finish running. `None` means it is given an
            unlimited amount of time.
        space_generator: Memory space in MB the generator has access to. `None` means it is given an unlimited
            amount of space.
        cpus_generator: Number of physical cpu cores the generator can use.
        timeout_solver: Timeout in seconds for the solver to finish running. `None` means it is given an unlimited
            amount of time.
        space_solver: Memory space in MB the solver has access to. `None` means it is given
            an unlimited amount of space.
        cpus_solver: Number of physical cpu cores the solver can use.
        generator_battle_input: Additional data the generator will be provided with.
        solver_battle_input: Additional data the solver will be provided with.
        generator_battle_output: Class used to parse additional data the generator outputs into a python object.
        solver_battle_output: Class used to parse additional data the solver outputs into a python object.
        with_results: Whether to return the raw result objects.

    Returns:
        The resulting info about the executed fight, and the results if the flag has been set.
    """
    gen_result, sol_result = await self.run_raw(max_size=max_size, **kwargs)
    score = self.calculate_score(gen_result, sol_result)
    fight = Fight.from_results(
        score=score, max_size=max_size, generator=gen_result, solver=sol_result, config=self.log_config
    )
    self.battle.fights.append(fight)
    self.ui.end_fight()
    if with_results:
        return fight, gen_result, sol_result
    else:
        return fight

algobattle.battle.Fight

Bases: BaseModel

The result of one fight between the participating teams.

For a more detailed description of what each fight looks like, see :meth:FightHandler.run.

Source code in algobattle/battle.py
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
class Fight(BaseModel):
    """The result of one fight between the participating teams.

    For a more detailed description of what each fight looks like, see :meth:`FightHandler.run`.
    """

    score: float
    """The solving Team's score.

    Always a number in [0, 1]. 0 indicates a total failure of the solver, 1 that it succeeded perfectly.
    """
    max_size: int
    """The maximum size of an instance the generator was allowed to create."""
    generator: ProgramRunInfo
    """Data about the generator's execution."""
    solver: ProgramRunInfo | None
    """Data about the solver's execution."""

    @classmethod
    def from_results(
        cls,
        max_size: int,
        score: float,
        generator: GeneratorResult,
        solver: SolverResult | None,
        *,
        config: ProgramLogConfigView,
    ) -> Self:
        """Turns the involved result objects into a jsonable model."""
        inline_output = config.when == "always" or (
            config.when == "error"
            and (generator.error is not None or (solver is not None and solver.error is not None))
        )
        return cls(
            max_size=max_size,
            score=score,
            generator=ProgramRunInfo.from_result(generator, inline_output=inline_output),
            solver=ProgramRunInfo.from_result(solver, inline_output=inline_output) if solver is not None else None,
        )

score: float instance-attribute

The solving Team's score.

Always a number in [0, 1]. 0 indicates a total failure of the solver, 1 that it succeeded perfectly.

max_size: int instance-attribute

The maximum size of an instance the generator was allowed to create.

generator: ProgramRunInfo instance-attribute

Data about the generator's execution.

solver: ProgramRunInfo | None instance-attribute

Data about the solver's execution.

from_results(max_size, score, generator, solver, *, config) classmethod

Turns the involved result objects into a jsonable model.

Source code in algobattle/battle.py
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
@classmethod
def from_results(
    cls,
    max_size: int,
    score: float,
    generator: GeneratorResult,
    solver: SolverResult | None,
    *,
    config: ProgramLogConfigView,
) -> Self:
    """Turns the involved result objects into a jsonable model."""
    inline_output = config.when == "always" or (
        config.when == "error"
        and (generator.error is not None or (solver is not None and solver.error is not None))
    )
    return cls(
        max_size=max_size,
        score=score,
        generator=ProgramRunInfo.from_result(generator, inline_output=inline_output),
        solver=ProgramRunInfo.from_result(solver, inline_output=inline_output) if solver is not None else None,
    )